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Evolution of a sandpile in a thick-flow regime
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We solve a one-dimensional sandpile problem analytically in a thick flow regime when the pile evolution
may be described by a set of linear equations. We demonstrate that, if an income flow is constant, a space
periodicity takes place while the sandpile evolves even for a pile of only one type of particles. Hence, grains
are piling layer by layer. The thickness of the layers is proportional to the input flow of particlesr 0 and
coincides with the thickness of stratified layers in a two-component sandpile problem, which were observed
recently. We find that the surface angleu of the pile reaches its final critical value (u f) only at long times after
a complicated relaxation process. The deviation (u f2u) behaves asymptotically as (t/r 0)21/2. It appears that
the pile evolution depends on initial conditions. We consider two cases:~i! grains are absent at the initial
moment, and~ii ! there is already a pile with a critical slope initially. Although at long times the behavior
appears to be similar in both cases, some differences are observed for the different initial conditions are
observed. We show that the periodicity disappears if the input flow increases with time.

PACS number~s!: 83.10.Hh, 83.70.Fn, 83.10.Pp, 45.05.1x
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I. INTRODUCTION

Granular flows have attracted increasing interest over
last years, and constitute now a very active research fi
with apparent technological applications@1–9#. Reasons for
such great attractiveness of granular media or of the so ca
soft matter are clear: they present not only unusual prope
that let them look like solids in some cases and liquids
other ones, but they also display new phenomena unkn
both to solids and liquids. Such a new and intriguing ph
nomenon is recently observed spontaneous stratificatio
granular mixtures@10–16#. When a granular mixture is
poured into a Hele-Shaw cell~i.e., in a quasi-two-
dimensional silo! under some conditions, layers of differe
grains appear to be arranged periodically.

Several studies were carried out to explain the strik
stratification@10–16# although the problem seems to be ve
complicated for an analytical treatment. In our communi
tion @17# we put forward the following question: is it pos
sible to find some precursor of stratification in a much si
pler situation when only one type of grains is poured? W
shall present a full answer below for one of the limit regim
of sandpile spilling using an approach most convenient
analytical consideration.

Crucial progress in understanding of granular flow nat
was made some years ago when Bouchaud, Cates, Pra
and Edwards@18# ~see also the papers of Mehta and Bark
@19# and of Mehta, Needs, and Dattagupta@20#! introduced a
clear phenomenological theory that describes a surface
of granular materials. The main idea of the approach is
following. The grains are divided to two parts—static grai
and rolling ones. The conversion of static grains to rolli

*Electronic address: sdorogov@fc.up.pt
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ones occurs depending on the relation between the l
slope of a pile and the repose angle of the material. In ad
tion, the continuity equation for the total amount of grai
holds. Thus, the problem can be reduced to two coup
partial differential equations for the local amounts of sta
and rolling grains. One should note that similar ideas w
also applied to a self-organized criticality problem@21–23#.

Nevertheless, even this simple approach is still com
cated because of nonlinearity of the equations. Recen
Boutreux, Raphae¨l and P.-G. de Gennes@24# proposed a phe-
nomenological description of some special case of gran
flows — a so called thick flow regime — that provides
unique possibility for an analytical treatment: in this case
coupled equations are linear and one of them is comple
decoupled from the other one. In papers@24,25# this ap-
proach was used to study some granular flow configuratio
Relaxation of sand from several most simple states was c
sidered, generalization to many-component flows were p
posed@26–28#, and new improvements of the approach we
made@29# to make it closer to reality, though the main cla
sical sandpile problem still remained unsolved even for
simplest version of such a description.

We shall use the proposed phenomenological equation
answer positively the above stated question and to descri
total evolution of the sandpile, that will turn to be surpri
ingly complex. We will show that the slope of the pile a
proaches its critical value only at long times after a comp
cated discontinuous relaxation process@17#. In fact, we shall
reconsider a classical sandpile problem using, maybe,
simplest possible idea without appealing to more refined
proaches like, for instance, self-organized critical
@30,31,9#.

To start with, let us write out the phenomenological equ
tions we shall use. Boutreux, Raphae¨l, and P.-G. de Genne
@24# describe phenomenologically the one-dimensional th
granular flows~the flow thickness supposed to be mu
2909 ©2000 The American Physical Society
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2910 PRE 61S. N. DOROGOVTSEV AND J. F. F. MENDES
higher than the grain size! by the following equations:

]r

]t
2v

]r

]x
5vuS ]h

]x
2u f D ,

~1!
]h

]t
52vuS ]h

]x
2u f D .

Here h(x,t) is a profile of the static part of the materia
r (x,t) is the width of a moving granular layer; we assum
that the flow is from right to left and all rolling grains ar
supposed to move with an equal velocityv. r (x,t) and
h(x,t) describe completely the evolution of a pile. The su
of Eqs. ~1!, ](r 1h)/]t2v]r /]x50, has the form of the
continuity equation for grains,vr (x,t) is a local flow. The
right hand parts describe the conversion of the static gr
to rolling ones and vice versa depending on a relation
tween a local slope]h/]x andu f . The meaning ofvu is the
velocity of the uphill fronts as we shall see later. Usua
vu.v @14,24#. u f is a critical angle, or a so called repos
angle, that is the angle to which the sandpile will evolve. T
deviations of the local slope fromu f are supposed to b
small. Eq.~1! is valid for r (x,t).0. If r (x,t)50, then the
right hand parts of Eqs.~1! are supposed to be equal to zer
Therefore, the functionvu(r ), which equals const•r in the
thin flow regime@18#, now is a constantvu for r .0 and is
zero atr 50.

The physical reasons to introduce equations~1! in such a
form are described in@24,25#. One can see that, at a give
point, static grains converse to rolling ones only if the loc
slope of the pile is higher than the critical angle, and rolli
grains converse to static ones, if the local slope is lower t
the critical angle. These linear equations are much sim
for an analytical treatment than the previously proposed n
linear equations for a thin flow regime@18,26–28# in which
the characteristic velocityvu in Eq. ~1! is replaced byr (x,t)
divided by a constant with the dimensionality of time.

In fact, Eqs.~1! represent, maybe, a minimal model f
the description of granular flows. The equations are re
very simple: the second equation is independent of the
one. The general solution of Eqs.~1! may be written imme-
diately in the form@24#:

r ~x,t !5u~x1vt !2
vu

v1vu
w~x2vut !2vuu f t,

h~x,t !5w~x2vut !1vuu f t, r .0; ~2!

h~x,t !5const, r 50,

whereu(x) andw(x) are arbitrary functions. We shall use
to describe the sandpile evolution phenomenologically
glecting, as usual@24,25#, possible near-front deviation
from the thick flow regime. In fact, in paper@25#, moving
fronts of granular flows were studied in intermediate situ
tions between the thick flow regime and the thin flow regim
The results@25# show that such a neglect is possible.

It is convenient to use also the relation describing cons
vation of number of grains that follows from the continui
equation:
s
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r-

E
2`

0

dx@h~x,t !1r ~x,t !#

5vr 0t1E
2`

0

dx@h~x,0!1r ~x,0!#. ~3!

It follows directly from Eq.~2! that the solutions consis
of the partw(x2vut) moving with the velocityvu to the
right, the partu(x1vt) moving with the velocityv to the
left, and the growing~for h) or decreasing~for r ) homoge-
neous background. Specific initial and boundary conditio
which we shall use in Secs. II and III, will result inu(z) and
w(z) consisting only of linear parts. Therefore, the solutio
will have breaks between linear parts. Some of them w
move to the right with the velocityvu and others to the left
with the velocityv. Coordinates of left fronts of the rolling
and static grain distributions coincide and, because of
decreasing linearly~for r ) or increasing linearly~for h) ho-
mogeneous background, may move with velocities low
thenv if the front of r (x) is not of jumplike form. One may
check, using, e.g., Eq.~3!, that a jumplike front of the rolling
grain distributionr (x,t) may move only with velocityv to
the left. As it follows from Eq.~2!, linear parts ofr (x) and
h(x) can move only parallel to themselves or are motionle
Thus, local slopes of the distributions can change only d
continuously if an income flow is constant in time. We sh
show the picture of the evolution more clearly for particu
examples in Secs. II and III.

Thus, to describe the pile evolution we only have to so
linear equations with initial and boundary conditions. T
boundary conditions are defined from the condition on
input flow ~we set it constant usually! and from consideration
of a moving front of the pile — a moving boundary. In fact
that is the most difficult point in solving problems of th
kind.

There are several possibilities to choose initial conditio
In Secs. II and III we consider two most interesting a
natural cases:~i! grains are absent at the initial moment, a
~ii ! there is already a pile with a critical slope initially. W
shall show that the pile evolution is a complicated proces
both cases. The slope of a pile approaches its critical va
only at infinite times after a long relaxation process duri
which areas with different slopes are present. At long tim
the pile evolution looks very similar for both initial cond
tions, although, some distinction can be found even at
infinity. Thus, we observe a long memory of initial cond
tions.

The results obtained for initial conditions~i! and ~ii ! are
presented in Figs. 1 and 5 — movies ofr andh distribution
profiles, in Figs. 2 and 6 — diagrams of trajectories of fron
and breaks of the grain distributions on thet,x-plane, and in
Figs. 3 and 7 — the dependencies of the pile slopes on ti

In fact, all these figures depict a long relaxation proces
the critical state~i.e., to the pile with the critical angle! by
different means. For example, from Fig. 3 one sees that
relaxation is discontinuous — local derivatives of the slo
over time are zero or infinity for all times.

We shall demonstrate the space periodicity appea
while a pile evolves: it turns out that grains are piling lay
by layer~see Fig. 2 and 6! and the thickness of the layers ju
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PRE 61 2911EVOLUTION OF A SANDPILE IN A THICK-FLOW REGIME
coincides with the thickness of the stratified layers obser
in two-component sandpiles@11,14#. Thus, we give positive
answer to the question stated above and find a precurso
an intriguing stratification phenomena already in an o
component sandpile problem.

One may wonder now if there is any possibility for
sandpile to evolve without a space periodicity at all. W
demonstrate that, of course, such evolution is possible
thick flow regime, for example, if an input flow is a linea
function of time. We show that the front moves with a co
stant velocity all the time, and linear profiles of moving a
static grains expand without any surprises in that situa
~see Fig. 4!. The relation between amounts of static and ro
ing grains in a pile depends on the rate of the input fl
increase.

FIG. 1. The evolution of the profiles of rolling grainsr (x) and
static grainsh(x) in the region2`,x,0. In the initial state grains
are absent,r (2`,x,0,t50)5h(2`,x,0,t50)50. ~a! 0,t
,t1, the front moves with the velocityv. ~b! t5t1 @see Fig. 2 and
Eq. ~4!#. ~c! t1,t,t2, the front moves with some velocityvd,v
,vu , the breaks of the profiles move uphill with the velocityvu .
~d! t5t2, the breaks approach the wall atx50. ~e! t2,t,t3, the
front proceeds to move with the velocityvd , the break ofr (x)
moves downhill with the velocityv. Note, that the right linear par
of r (x) is always motionless. After the break ofr (x) overtakes the
front at t5t3, the general configurations~b!—~e! is repeated with a
lower front velocity.
d

of
-

a

-

n
-

II. SANDPILE EVOLUTION STARTING
FROM EMPTY STATE

A. Constant input flow

The case we will consider in this section corresponds
the situation when there are no particles in the initial sta

Let there be a wall atx50, and grains be poured perma
nently beginning from the momentt50 at this point, so
r (x50,t)5r 0 is a boundary condition (r 0 is the thickness of
the input flow!. Let, first, r 0 be constant in time. The sand
pile is supposed to expand to the left, i.e., tox52`. There
are no particles at the initial stage sor (x<0,t50)50, h(x
<0,t50)50 are the initial conditions. Inserting general s
lutions from Eqs.~2! and the above initial and boundar
conditions one may obtain the functionsu(z) andw(z).

To clear up the picture and to simplify the calculations w
start from the following consideration of the begininnin
stage.@Below, we shall demonstrate consistent complete c
culations in the more frequent case, which is realized at m
long times, of ar (x) front linearly decreasing to zero.#

One may see that because of the initial and bound
conditions forr (x,t) and of the form of general solution fo
it Eq. ~2!, r (x,t) should first have a jump front; the part o
r (x,t) adjacent tox50 has to be independent oft. The last
statement follows immediately from the form of the gene
solutions Eq.~2! and from the fixed right boundary conditio
r (x50,t)5r 0. The first statement follows from the last on
— the jump front ofr (x,t) is the only possibility for the first
stage of the process. But then, as we have seen in Sec
has to move with velocityv.

The distribution of static grainsh(x,t), which appears
from the precipitation of rolling ones has a front that goes
zero without an abrupt leap but linearly in the case un
consideration, since there are no fixed boundary conditi
for h in the right. Then one can easily imagine that at first t
solutions have to look as shown in Fig. 1~a! ~as we have
noticed, nothing but linear functions may appear from t
considered initial and boundary conditions!. In principle, one

FIG. 2. The areas of different solutions for the profiles of rollin
and static grains for the pile evolution starting from an empty st
@see Eqs.~22! and ~23!#. v/vu50.3. The lower segmented lin
shows the dependence of the front coordinate on time. The s
lines x5vu(t2t2m), m51,2, . . . depict the uphill movement of
the r (x) and h(x) breaks. The dashed linesx52v(t2t2m) show
the downhill movement of the break of ther (x) profile. The points
xm are arranged periodically.
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2912 PRE 61S. N. DOROGOVTSEV AND J. F. F. MENDES
may immediately insertr and h in this form @r (x,t)5r 0
2ax, h(x,t)5b(x1vt), wherea andb are constant coeffi-
cients# into Eq. ~1! and obtain the following answer in th
time interval 0,t,t15(v1vu)r 0 /(vvuu f):

r ~x,t !5S r 01
vu

v1vu
u fxDQ~x1vt !

~4!

h~x,t !5
vu

v1vu
u f~x1vt !.

Q(x) is the Heaviside function@we do not write the multi-
plier Q(x1vt) in the right hand side part of the secon
equation of Eqs.~4!, since, of course,r (x) andh(x) can not
be negative#. The static grains are precipitated from the ro
ing ones, so the front coordinates ofr (x) and h(x) should
coincide. The meaning of the timet1 is clear from Fig. 1~a!
— it is the very first instant at which the jump at the fro
appears to be zero. Note, that the slope of the static
]h/]x5vuu f /(v1vu) is less than the critical slope, so th
relaxation to the critical slope is nontrivial.

Nevertheless, to be sure, we prefer to substitute the g
eral solutions Eq.~2! into the following set of initial and
boundary conditions

r ~x,t50!50,

h~x,t50!50,
~5!

r ~x50,0,t,t1!5r 0 ,

h~x52vt,0,t,t1!50.

Using previous considerations to simplify the calcu
tions, we assume in Eq.~5! the front velocity to be equal to

FIG. 3. The dependence of the relative pile slope on time w
the pile evolution starts from an empty state.v/vu50.3. uh is the
slope of a static part of the pile.uh1r is the slope of the whole pile
consisting of static and rolling parts. The upper set of lines sho
uh1r . At infinity uh ,uh1r→u f . The separated lines foruh1r are
defined for 0,t,t2 , t1,t,t3 , t2,t,t4, etc. ~see Fig. 2!. The
lines for uh are defined for 0,t,t2 , t1,t,t4 , t3,t,t6, etc.
Sometimes~e.g., att1,t,t2 , t3,t,t4, etc. for uh) the profiles
have two parts with different slopes.
rt

n-

-

v from the very beginning, so a fifth condition forr (x,t) at
the front point is not necessary. In principle, the timet1 may
be obtained if one demands that all parts of functionsu(z)
andw(z) have to be connected together continuously, but
prefer to use the already known expression fort1 and be sure
that calculations are self-consistent@i.e., all parts of functions
u(z) and w(z) are connected together continuously# only
afterwards.

Substituting the general solutions Eq.~2! into Eq. ~5! we
get

wS 2
~v1vu!2

vvu

r 0

u f
,z,0D5

vu

v1vu
u fz,

~6!

uS 0,z,
v1vu

vu

r 0

u f
D5r 01

vu~v12vu!

~v1vu!2
u fz.

After substitution Eq.~6! into Eq.~2! we again obtain our
solution Eq.~4! of Eq. ~1! with a front moving to the left
with the velocity v in the time interval 0,t,t1 @see Fig.
1~a!#.

As a result, at the timet1 one gets

r ~x,t1!5r 01
vu

v1vu
u fx, ~7a!

h~x,t1!5r 01
vu

v1vu
u fx, ~7b!

for 2@(v1vu)/(vvu)#r 0 /u f,x,0 @Fig. 1~b!#. These equa-
tions are used as initial conditions to find the solutions in
next time intervalt1,t,t3, at which the front ofr (x,t) will
be jumpless.

Times t2 and t3 appear naturally from the solution~see
Fig. 1! but we prefer to write out their expressions immed
ately: t25@(v1vu)2/vvu

2#r 0 /u f and t35@(v1vu)(v
13vu)/vvu

2#r 0 /u f . As one may understand from the figur
the meaning of the times is the following:t2 is the time at

n

s

FIG. 4. The evolution of a sandpile with a linearly growin
input flow: r 05v0t, v05const. An initial state is empty. We show
here both static and rolling grains in the same plots, so profiles
h(x) andh(x)1r (x) are presented. The fronts moves with a tim
independent velocityvd which is a function ofv0. ~a! The ratev0 is
much higher thanv0* @see Eq.~33! and the text#. The front velocity
is close to its maximal possible valuev, rolling grains have no time
to converse into static ones, so the amount of rolling grains is m
greater than the amount of static grains.~b! The ratev0 is much
lower thanv0* . A relative amount of rolling grains is small, th
front velocity tends to zero, and the slope of the distribution
static grains is nearly critical.
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FIG. 5. The evolution of the
profiles of rolling grainsr (x) and
static grainsh(x) starting from
the critical state~see the text for
details!. At the initial momentr
(2`,x,0,t50)50 and h(2`
,x,0,t50)5u f(x1d). Plots
~a!–~q! show the profiles at some
successive instants. Afterward
the evolution proceeds in a simila
way. The scale is changed from
one plot to another.
io

s
t
wn
l

r
m

g

f th

f
r-

ns
the
es.
which breaks ofr (x,t) andh(x,t) moving from the front to
the right with the velocityvu will approach the pointx50;
and t3 is the time at which the break ofr (x,t) moving from
x50 will overtake the front.

To simplify our calculations, we again use the express
for t3 and check the correctness of the choice oft3 at the
very end of the calculations.

Now we show how to treat moving boundary condition
We have to add to the initial conditions Eq.~7! the following
boundary conditions:

r ~x50,t.0!5r 0 , ~8a!

FIG. 6. Trajectories of the front and the breaks of ther (x) and
h(x) profiles ont,x-plane in the case of the pile evolution startin
from a critical state~compare with Fig. 2!. v/vu50.3. h(x,t50)
5u f(x1d). The lower segmented line shows the dependence o
front coordinate on time. The solid linesx5vu(t2t2m),m
51,2, . . . depict the uphill movement of ther (x) andh(x) breaks.
The dashed linesx52v(t2t2m) show the downhill movement o
the break of ther (x) profile. The coordinates of plateaus are a
ranged periodically.
n

.

r S x52
v1vu

vvu

r 0

u f
2vd~ t2t1!,t1,t,t3D50, ~8b!

hS x52
v1vu

vvu

r 0

u f
2vd~ t2t1!,t1,t,t3D50. ~8c!

Equations~8b! and ~8c! are the conditions for the lef
front of the pile that is supposed to move with a yet unkno
velocity vd . All we have to do is~i! to insert the genera
solutions Eq.~2! into Eqs.~7! and ~8!; ~ii ! to find vd , u(z),
and w(z); and ~iii ! to check the self-consistency of ou
choice of t3, which was made beforehand, in fact, fro

e
FIG. 7. The dependence of the relative pile slopeuh /u f on time

when the pile evolution starts from the critical state~compare with
Fig. 3!. v/vu50.3. In some time intervals the profile of static grai
has two or even three parts with different slopes. Segments with
slope equal exactly to the critical one are present even at long tim
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physical reasons. Note that the beforehand choice oft3 was
used only to make the following intermediate formulas mo
compact.

Substitution of Eq.~2! into Eq. ~8c!, ~7b!, ~7a!, and ~8b!
gives

wS 2
v1vu

vvu
2 ~vdv12vuv12vdvu13vu

2!
r 0

u f

,z,2
~v1vu!2

vvu

r 0

u f
D

5
~v1vu!~v2vd!

v~vu1vd!
r 01

vu

vu1vd
u fz, ~9!

wS 2
~v1vu!2

vvu

r 0

u f
,z,2

v1vu

v
r 0

u f
D5

vu

v1vu
u fz, ~10!

uS 0,z,
v1vu

vu

r 0

u f
D5r 01

vu~v12vu!

~v1vu!2
u fz, ~11!

and

uS 0,z,
~v2vd!~v1vu!~v12vu!

vvu
2

r 0

u f
D

5r 01
vvu

~v2vd!~v1vu!
u fz ~12!

correspondingly. The functionsu(z) from Eqs.~11! and~12!
have to coincide since they are defined at~at least! overlap-
ping intervals ofz ~we shall see below that, in fact, thes
intervals coincide!. Thus, equating Eqs.~11! and ~12! we
obtain the answer forvd in the case under consideration:

vd5
vvu

~v12vu!
. ~13!

One sees immediately thatvd,v,vu . Inserting this expres-
sion into Eq.~12! we find that the intervals of the variablez
for u(z) in Eqs.~11! and ~12! are the same.

Inserting Eq.~13! into Eq. ~9! we obtain

wS 23
~v1vu!2

vvu

r 0

u f
,z,2

~v1vu!2

vvu

r 0

u f
D

5
v1vu

2vu
r 01

~v12vu!

2~v1vu!
u fz. ~14!

At last, substitution of Eq.~2! into Eq.~8a! gives, accounting
for already known answers forw(z) Eqs. ~10! and ~14! in
different intervals ofz, the following expressions foru(z):

uS ~v1vu!

vu

r 0

u f
,z,

~v1vu!2

vu
2

r 0

u f
D 5r 01

vu~v12vu!

~v1vu!2
u fz

~15!

and
e uS ~v1vu!2

vu
2

r 0

u f
,z,3

~v1vu!2

vu
2

r 0

u f
D

5
3

2
r 01

vu~2v13vu!

2~v1vu!2
u fz. ~16!

Combining Eqs.~11! and ~15! we get

uS 0,z,
~v1vu!2

vu
2

r 0

u f
D 5r 01

vu~v12vu!

~v1vu!2
u fz. ~17!

Eqs.~16!, ~17!, ~10!, and~14! present a full answer foru(z)
andw(z). One may see easily that they are bounded conti
ously, so our choice oft3 was correct. Inserting Eqs.~16!,
~17!, ~10!, and~14! into Eq. ~2! we obtain a full solution of
the problem fort1,t,t3:

r ~vu~ t2t2!,x,0,t.t1!5r 01
vu

v1vu
u fx, ~18a!

r S 2
~v1vu!2

vu~v12vu!

r 0

u f
2

vvu

v12vu
t,x,2v~ t2t2!,vu~ t2t2! D

5
r 0

2
1

vu~v12vu!

2~v1vu!2
u f S x1

vvu

v12vu
t D , ~18b!

r „2v~ t2t2!,x,0,t,t3…5r 01
vu

2~v1vu!
u fx, ~18c!

h~vu~ t2t2!,2vt,x,0!5
vu

~v1vu!
u f~x1vt !,

~18d!

hS 2
~v1vu!2

vu~v12vu!

r 0

u f
2

vvu

v12vu
t,x

,2vu~ t2t2!,0,t,t3D
5

v1vu

2vu
r 01

~v12vu!

2~v1vu!
u f S x1

vvu

v12vu
t D . ~18e!

These solutions are shown in Figs. 1~b–e! @see also Fig. 2,
the regiont1,t,t3 in which trajectories of the front — a
lower segmented line — and the breaks ofr (x,t) andh(x,t)
are depicted#. The solutions~18a! and ~18d! are defined in
region 1 of Fig. 2, the solution~18b! is defined in region 2 of
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the figure, the solution~18c! is defined in region 3, and th
solution~18e! for h(x,t) is defined in both regions 2 and 3

The evolution looks as the following. At the instantt1
new linear parts ofr and h appear at the front pointx5
2@(v1vu)/vu#r 0 /u f . The new front moves to the left with
the velocity vd , breaks ofr (x,t) and h(x,t) move to the
right with the velocityvu—a solid linex5vu(t2t2) in Fig.
2. The slope of this part of the static grain distributionh(x,t)
is higher than it was at the first stage but lower than
critical slope. The breaks approach thex50 point at t5t2.
Then a new time-independent linear part ofr (x) appears
close to the wall. The left part proceeds to move to
left, so we see a break moving downhill — a dashed l
x52v(t2t2) in Fig. 2. Its velocity equalsv. Note that,
unlike r (x,t), h(x,t) has no breaks fort2,t,t3. At the
instant t3 the break ofr (x,t) overtakes the front. That is
possible, since the velocity of the front is lower than t
downhill velocity of the break,vd,v.

Therefore we confirm the general picture of the evolut
predicted in Sec. I: there exist breaks of bothr (x,t) and
h(x,t) moving uphill with the velocityvu , and only the
break of h(x,t) is moving downhill with the velocityv.
When the breaks approach a wall or the break ofh(x,t)
overtakes the front, new linear parts of the solutions app

From our solutions Eq.~18!, we obtain new initial condi-
tions for r (x,t) and h(x,t) at the momentt5t3. Then we
may repeat the described procedure for the next time inte
t3,t,t5, etc. However, now, when we understand the str
ture of the solution, one may again simplify the calculatio
Instead of calculating the functionsu(z) andw(z) one may
proceed directly withr (x,t) and h(x,t). Areas of different
linear parts of solutions are triangular regions in Fig. 2 se
rated one from each other by solid or dashed lines
trajectories of the breaks. Let us suppose that the solutio
known in the region (0,0) — (x1 ,t1) — (0,t2), i.e., in region
1 in Fig. 2. One may sew easily an unknown linear solut
in the adjusted triangular region 2 together with the kno
one along the linex52v(t2t2). It is easy to find coeffi-
cients of linear terms and, therefore, the front velocity. Fr
this values one finds the shape (x1 ,t1) — (0,t2) — (x2 ,t3)
of region 2 in which the new part of the solution is defin
~see Fig. 2!. Then we repeat the described procedure for
next triangle, etc.

After these simple but rather tedious calculations we
tain the total solution consisting of linear parts, a structure
which one can see from Figs. 1 and 2 and following eq
tions. The lowest segmented line in Fig. 2 shows the dep
dence on time of the front position. Coordinates of the s
ments are:

x~ t2m21,t,t2m11!52
m~m11!

2

~v1vu!2

vuVm

r 0

u f
2

vvu

Vm
t,

m50,1,2, . . . ~19!

~for m50 the time interval is 0,t,t1) with Vm[mv1(m
11)vu . The particular times shown in Fig. 2 are

t2m215
m

2

~v1vu!@~m21!v1~m11!vu#

vvu
2

r 0

u f
,

e

e
e

r.

al
-
.

-

is

n
n

e

-
f
-
n-
-

t2m5
m~m11!

2

~v1vu!2

vvu
2

r 0

u f
,

m51,2, . . . . ~20!

The front coordinates corresponding to timest2m21 at which
the front velocity changes its value are

x~ t2m21!52m
~v1vu!

vu

r 0

u f
, m51,2, . . . . ~21!

Hence, these points are arranged periodically. Two ot
types of lines are shown in Fig. 2: solid linesx5vu(t
2t2m) and dashed linesx52v(t2t2m), m51,2, . . . . The
lines of the first type depict the uphill movement of th
breaks of both profilesr (x) andh(x) @Fig. 1~c!#. The lines of
the second type show the downhill movement of the break
the profiler (x) with the velocityv @see Fig. 1~e!#.

Solutions for all regions of Fig. 2, connected at the
lines, look as

r ~2v~ t2t2m22!,vu~ t2t2m!,x,0!

5r 01
vu

m~v1vu!
u fx,

r S 2
m~m11!

2

~v1vu!2

vuVm

r 0

u f
2

vvu

Vm
t

,x,2v~ t2t2m!,vu~ t2t2m! D
5

r 0

2
1

1

m~m11!

vuVm

~v1vu!2
u f S x1

vvu

Vm
t D ,

m51,2, . . . ~22!

h~vu~ t2t2m12!,x,vu~ t2t2m!,0!

5
m

2

v1vu

vu
r 01

Vm

~m11!~v1vu!
u f S x1

vvu

Vm
t D ,

m50,1,2, . . . . ~23!

Here, we sett050. Inequalities in the right hand parts o
Eqs.~22! and~23! define the areas of validity of the solution
~see Fig. 2!. Equations~22! and ~23! describe totally the
sandpile evolution, see Fig. 1~b-e!.

From Eq.~23! and Fig. 2, a space periodicity of the pro
cess is evident: general shapes of the profilesr (x) andh(x)
are repeated each time the front moves byv
1vu)r 0 /(vuu f) to the left. In fact, the pile is increased laye
by layer, and the expression for the width of these layer
the same as the one for the width of stratified layers of d
ferent fractions in a two-component sandpile~that was ob-
tained in papers@11,14#!. One sees from Eq.~23! that heights
of the pile at timest2m are also periodic inm:

h~x50,t2m!5m
v1vu

vu
r 0 ,m50,1,2, . . . . ~24!
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It follows from Eq. ~23! that the slope,uh[]h/]x, of the
static part of the pile will approach its critical value only
infinite time:

uh~ t2m23,t,t2m!5S 12
v

m ~v1vu! D u f , m51,2, . . .

~25!

~for m51, 0,t,t2) ~see Fig. 3!. At t2m21,t,t2m ,m
51,2, . . . there are two different slopes for two parts of t
profile h(x). For t2m,t,t2m11 ,m50,1,2, . . . all theprofile
has the same slope. Thus, for long timest@@(v
1vu)2/(vvu

2)#r 0 /u f the slope behaves as

uh>S 12
v
vu
A r 0

2vu f t
D u f , ~26!

anduh relaxes slowly to its final valueu f by a power law.
A slope of the whole pile — including both static an

rolling parts,uh1r[](h1r )/]x, depends on time in the fol
lowing way:

uh1r~ t2m22,t,t2m!5S 11
vu2v

m ~v1vu! D u f ,

uh1r~ t2m21,t,t2m11!

5S 11
vu2v

m ~v1vu!
1

v2

m~m11!~v1vu!2D u f , ~27!

m51,2, . . .

~see Fig. 3! and approaches the final valueu f from above at
long times. It behaves asymptotically as

uh1r>S 11
vu2v

vu
A r 0

2v u f t
D u f ~28!

@compare with Eq.~26!#.
At long times, the coordinate of the front isx

>A2vr 0t/u f , and its velocity tends to2Avr 0 /(2u f t). Two
last relations are obvious. Indeed, at long times the slop
a pile is close to its critical value. The relative part of rollin
grains is small. After substitution of a linear function wi
the critical slope into the condition of conservation of gra
Eq. ~3! we obtain last relations immediately.

B. Time dependent input flow

As we have noted in Sec. I, space periodicity of the p
evolution may disappear if an input flow increases with tim
Let us consider the simplest example of a linear time dep
dence:r 0(t)5v0t ~the constantv0 has dimensionality of a
velocity!. Now there are not any jumps of profiles at th
front point, since the growth ofr 0 starts from zero and an
initial state is empty, so the problem is simpler than th
considered above.

Instead of trying to solve the problem directly, one m
proceed in the following way. First we suppose that the
locity of the front is constant. Let us call itvd again. From a
moving boundary conditionh(x52vdt,t>0)50 at the
front point accounting for Eq.~2! we obtainw(z). Then from
of

.
n-

t

-

another moving boundary conditionr (x52vdt,t>0)50
and Eq.~2! one may getu(z). Inserting both answers into th
condition r (x50,t)5v0t we ~i! verify that the choice of a
constant front velocity is right and~ii ! find vd as a function
of v0.

We write out the answers immediately and check them
substituting in Eq.~1!. The profiles of moving and static
grains look as

r 5
v0

vd
~x1vdt !,

~29!

h5
vu

vd1vu
u f~x1vdt !

~see Fig. 4!, where the front velocity is

vd5
1

2

vu2v
11u fvu /v0

FA114
vvu

~vu2v !2 S 11u f

vu

v0
D21G .

~30!

In the figure, the evolution of the pile in the situation und
consideration is depicted. One may see that the relation
tween amounts of rolling and static grains depends consi
ably on the rate of the input flow increase. As it follows fro
Eqs.~29! and ~30!, whenv0@vuu f ,

vd>v,

r >
v0

v
~x1vt !,

h>
vu

v1vu
u f~x1vt !, ~31!

and the amount of rolling grains is much higher than t
amount of static grains@Fig. 4~a!#. The front velocity ap-
proaches its highest possible value, and rolling grains h
no time to converse into static ones. For a lowc

vd>Av0v
u f

,

r >Av0u f

v S x1Av0v
u f

t D , ~32!

h>u f S x1Av0v
u f

t D ,

so the front velocity tends to zero, the slope of the distrib
tion of static grains is nearly critical, and the relative amou
of rolling grains is small@Fig. 4~b!#.

The amounts of rolling and static grains in a pile are eq
for the following particular value of the rate of the input flo
growth:
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v0* 5
vvu

v12vu
u f ~33!

@compare with Eq.~13! from Sec. II A#. In this particular
case, the front velocity isvd* 5v/2.

III. SANDPILE EVOLUTION STARTING
FROM CRITICAL STATE

Now, let us switch on the input flow of grains when the
is already a pile with the critical slope. Thus, the initial co
dition for h is h(x,t50)5u f(x1d), whered is the initial
horizontal size of a pile. All other initial and boundary co
ditions are the same as in Sec. II A~the input flow is time-
independent!.

Now one can proceed with the calculations similar
those that were made in Sec. II to obtain the solutions
scribing the evolution of the pile. We omit the tedious c
culations and present immediately results for the case u
consideration. Main answers are presented schematical
Fig. 5 in which the distributions of rolling grainsr (x) and
the static onesh(x) are shown in several successive m
ments.~Note that scales change from one figure to anoth!
Trajectories of the front and the breaks on thet,x-plane are
shown in Fig. 6.

Let us comment the contents of Fig. 5, since it loo
rather intricate. At the initial moment rolling grains are a
sent, and the angle of the profile of static grains is critic
After we switch on an external flow, a step of rolling grai
starts to descend downhill the critical profile of static gra
@Fig. 5~a!#. Rolling grains do not convert to the static one

After the step approaches the last point of the profile
static grains@Fig. 5~b!# it proceeds to move to the left with
the same velocityv, but the height of the jump starts t
decrease with time@Fig. 5~c!#. A new linear part ofr (x)
emerges and begins to move uphill with the velocityvu .
~Recall that all linear parts of profiles move as a whole
stay without movement. They can not change their slo
with time.! A new more gently sloping part ofh(x) simulta-
neously appears and begin to move to the left with the
locity v, so a break ofh(x), coinciding with the break of
r (x), moves uphill with the velocityvu .

After the decreasing jump at the front ofr (x) disappears
@Fig. 5~d!# the linear part ofr (x,t) proceeds to move uphil
with the velocityvu @Fig. 5~e!#. The corresponding part o
h(x) also proceeds to move uphill. Behind it, a new sta
part of the profile with the critical slope emerges, so, in fa
an inclined step moves uphill.

When its first point touches a wall@Fig. 5~f!#, a new static
linear part ofr (x) appears to satisfy the boundary conditi
r (x50,t)5r 0 @Fig. 5~g!#. An old part of r (x) proceeds to
move uphill, so a new break ofr (x), that moves downhill
with the velocityv, emerges. Evolution ofh(x,t) proceeds
as before. At some instant@Fig. 5~h!# the last point ofr (x)
and the break ofr (x) meet. New linear part ofr (x) emerges
and starts to move downhill@Fig. 5~i!#. The h(x) profile
evolves in the same way as before.

When all theh(x) profile appears to be critical@Fig. 5~j!#,
the whole r (x) distribution is linear. This inclined profile
starts to move down the critical one@Fig. 5~k!#. The only
difference with the instant depicted in Fig. 6~a! is that the
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step of rolling grains is inclined now. After its first poin
approaches the last left point of the critical pile@Fig. 5~l!#
new linear parts ofr (x) and h(x) emerge that move to the
left with some velocityvd,v,vu @Fig. 5~m!#. Two breaks of
r (x) emerge that move one to each other.

After the breaks meet@Fig. 5~n!#, two new breaks ofr (x)
emerge that move away one from each other@Fig. 5~o!#
while h(x,t) proceeds the previous evolution. The movin
downhill break ofr (x) overtakes the front at some mome
@Fig. 5~p!#; after that an inclined step starts to climb uph
leaving after itself a new static critical slope part@Fig. 5~q!#.
Afterwards the evolution proceeds in the same way.

Thus, one sees that the evolution of a pile in this ca
looks more complicated than in Sec. II. Nevertheless, as
evident from Fig. 6, in which all trajectories of the front an
breaks ofr (x,t) and h(x,t) are shown, a general similarit
remains.

Let us describe Fig. 6. The solid linesx5vu(t
2t2m

2 ),vu(t2t2m), m50,1, . . . show trajectories of the
r (x,t) andh(x,t) breaks moving uphill~we introduce these
notations for the instants of time to keep a tie with the c
responding notations in Sec. II!. The dashed linesx52v(t
2t2m

2 ), 2v(t2t2m), m50,1, . . . andx52vt depict tra-
jectories of ther (x,t) break moving downhill. Comparing
with Fig. 2 from the previous section one sees that the c
responding lines for the break trajectories are splitted n
and static segments of the front trajectory appear. The
pressions for particular times shown in Fig. 6 are

t2m225m
v1vu

vvu
d1

~m21!m

2

~v1vu!2

vvu
2

,

t2m
2 5m

v1vu

vvu
d1

m~m11!

2

~v1vu!2

vvu
2

, ~34!

m51,2, . . .

— for the instants when the breaks ofr (x,t) and h(x,t)
reach a wall — and

t2m215
Vm

vvu
d1

m

2

v1vu

vvu
2 @~m21!v1~m11!vu#

r 0

u f
,

t2m11
2 5

Vm

vvu
d1

m11

2

v1vu

vvu
2 @mv1~m12!vu#

r 0

u f
, ~35!

m50,1, . . .

— for the times at which the break ofr (x,t) overtakes the
front.

The trajectory of the front can be described by the follo
ing relation
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x~ t2m11
2 ,t,t2m11!52d2~m11!

v1vu

vu

r 0

u f
,

x~ t2m21,t,t2m11
2 !52

m~m11!

2

~v1vu!2

vuVm

r 0

u f
2

vvu

Vm
t,

~36!

m50,1, . . .

andx(0,t,t21)52d. Note that the second relation of E
~36! coincides with Eq.~19!. Thus, at the corresponding in
stants, the front velocities are the same in both cases.
first relation of Eq.~36! again demonstrates the space pe
odicity of the process.

Time intervals for which the front is motionless do n
change with time:

t2m212t2m21
2 5

v1vu

vvu
d, m51,2, . . . ~37!

These intervals appear because of a new initial condition
even at long times one may observe the influence of
initial condition. Nevertheless, the duration of the other tim
intervals, when the front moves, increases with time. Th
the relative effect of the initial conditions decreases w
time.

We shall need only the following result forh:

h†vu~ t2t2m12
2 !,x,vu~ t2t2m12!‡

5u f S x1d1~m11!
v1vu

vu

r 0

u f
D ,

h@vu~ t2t2m12
2 !,x,vu~ t2t2m!#

5
m

2

~v1vu!

vu
r 01

Vm

~m11!~v1vu!
u f S x1

vvu

Vm
t D , ~38!

m50,1, . . . .

One sees that these relations are valid for different st
vu(t2t2m12

2 ),x,vu(t2t2m12) and vu(t2t2m12
2 ),x

,vu(t2t2m) of the x,t-plane. The first relation of Eq.~38!
describes parts of the distribution of static grains with
critical slope, and the second relation of Eq.~38! coincides
with the corresponding answer Eq.~23! for the first case.

The slope angles of the profiles of static grains obtain
from Eq. ~38! are shown in Fig. 7, which demonstrates mo
naturally the relaxation to the critical state. Unlike the pre
ous section~see Fig. 2!, in this case, segments with the crit
cal angle are present. As can be seen from Fig. 7, diffe
segments may overlap, and the profile may have two or e
three parts with different slopes simultaneously~see also Fig.
6!. Long time asymptotes of the pile slope are the same a
Sec. II.

IV. CONCLUSIONS

In summary, in the case of the thick flow regime, we ha
shown that space periodicity takes place during a sand
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evolution even for the one-component pile. The pile sp
during a repeating process if an income flow is consta
grains are piling layer by layer. The thickness of the lay
coincides surprisingly with the thickness of stratified laye
at the two-component sandpile problem@11,14#. Thus, in the
one-component pile, we found a clear precursor of the str
fication phenomena.

We have found very reach behavior using the most sim
and clear approach@24# admiting an easy analytical trea
ment. The slope of the pile goes to its final critical value af
complex relaxation, which is a long discontinuous proce
Indeed, in the case of a constant income flow, the pile sl
may change only discontinuously~see Figs. 2 and 6!. At long
times the deviation of the slope from its critical value
proportional toAr 0 /t.

The pile evolution from different initial conditions look
very similar at long times but even at such times one c
observe some difference~compare Figs. 2 and 6 for two mos
natural situations: the sandpile evolution starting from
empty state and the evolution starting from a critical stat!.

The space periodicity disappears if an input flow gro
linearly with time. In such a situation the sandpile fro
moves with a constant velocity all the time, and the p
evolves continuously without any peculiarities~see Fig. 4!.

Formally speaking, we studied only the one-dimensio
problem, but an ordinary three-dimensional sandpile with
axial symmetry~that means that sand is pouring on an in
nite horizontal plane at a single point! may be described by
the same equations as Eqs.~1! ~the coordinatex means the
distance from the center!. Thus, our results also stay valid fo
such a pile if one applies the phenomenological descrip
@18,24#.

Aradian, Raphae¨l, and de Gennes@29# have recently in-
troduced a dependence of the downhill velocityv on r in the
frames of the thick flow regime (vu5const). The profile
shapes in that case become nonlinear but a general pictu
a sandpile evolution will hardly change, since the struct
of the evolution equations is the same — in fact, the sec
equation of Eqs.~1! is independent of the first one.

The following questions remain open. How crucially d
our results depend on the used, maybe oversimplified, p
nomenological approach? Are they really of general sign
cance? Does the sandpile evolution in a thin flow regi
differ essentially from the described one? It is apparen
impossible to answer these questions within the present
proach, however the last results@32# and @33# on granular
flows in thin and intermediate regimes let one hope to so
these beautiful problems.
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