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Evolution of a sandpile in a thick-flow regime
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We solve a one-dimensional sandpile problem analytically in a thick flow regime when the pile evolution
may be described by a set of linear equations. We demonstrate that, if an income flow is constant, a space
periodicity takes place while the sandpile evolves even for a pile of only one type of particles. Hence, grains
are piling layer by layer. The thickness of the layers is proportional to the input flow of partiglead
coincides with the thickness of stratified layers in a two-component sandpile problem, which were observed
recently. We find that the surface angl®f the pile reaches its final critical valu@y) only at long times after
a complicated relaxation process. The deviatiop~6) behaves asymptotically as/(,) ~ 2 It appears that
the pile evolution depends on initial conditions. We consider two ca$egrains are absent at the initial
moment, andii) there is already a pile with a critical slope initially. Although at long times the behavior
appears to be similar in both cases, some differences are observed for the different initial conditions are
observed. We show that the periodicity disappears if the input flow increases with time.

PACS numbgs): 83.10.Hh, 83.70.Fn, 83.10.Pp, 45.6%.

[. INTRODUCTION ones occurs depending on the relation between the local
slope of a pile and the repose angle of the material. In addi-
Granular flows have attracted increasing interest over théon, the continuity equation for the total amount of grains
last years, and constitute now a very active research fieldolds. Thus, the problem can be reduced to two coupled
with apparent technological applicatiofis—9]. Reasons for partial differential equations for the local amounts of static
such great attractiveness of granular media or of the so calleahd rolling grains. One should note that similar ideas were
soft matter are clear: they present not only unusual propertiesiso applied to a self-organized criticality probl¢ai—23.
that let them look like solids in some cases and liquids in  Nevertheless, even this simple approach is still compli-
other ones, but they also display new phenomena unknoweated because of nonlinearity of the equations. Recently,
both to solids and liquids. Such a new and intriguing phe-Boutreux, Raphdend P.-G. de Genng&4] proposed a phe-
nomenon is recently observed spontaneous stratification afomenological description of some special case of granular
granular mixtures[10—-16. When a granular mixture is flows —a so called thick flow regime — that provides a
poured into a Hele-Shaw celli.e.,, in a quasi-two- unique possibility for an analytical treatment: in this case the
dimensional silo under some conditions, layers of different coupled equations are linear and one of them is completely
grains appear to be arranged periodically. decoupled from the other one. In papégst,25 this ap-
Several studies were carried out to explain the strikingoroach was used to study some granular flow configurations.
stratification[10—1§ although the problem seems to be very Relaxation of sand from several most simple states was con-
complicated for an analytical treatment. In our communica-sidered, generalization to many-component flows were pro-
tion [17] we put forward the following question: is it pos- posed26—28, and new improvements of the approach were
sible to find some precursor of stratification in a much sim-made[29] to make it closer to reality, though the main clas-
pler situation when only one type of grains is poured? Wesical sandpile problem still remained unsolved even for the
shall present a full answer below for one of the limit regimessimplest version of such a description.
of sandpile spilling using an approach most convenient for We shall use the proposed phenomenological equations to
analytical consideration. answer positively the above stated question and to describe a
Crucial progress in understanding of granular flow naturetotal evolution of the sandpile, that will turn to be surpris-
was made some years ago when Bouchaud, Cates, Prakastgly complex. We will show that the slope of the pile ap-
and Edward$18] (see also the papers of Mehta and Barkerproaches its critical value only at long times after a compli-
[19] and of Mehta, Needs, and Dattaguf28)]) introduced a  cated discontinuous relaxation procg¢$g]. In fact, we shall
clear phenomenological theory that describes a surface floneconsider a classical sandpile problem using, maybe, the
of granular materials. The main idea of the approach is theimplest possible idea without appealing to more refined ap-
following. The grains are divided to two parts—static grainsproaches like, for instance, self-organized criticality
and rolling ones. The conversion of static grains to rolling[30,31,9.
To start with, let us write out the phenomenological equa-
tions we shall use. Boutreux, Raphaand P.-G. de Gennes
*Electronic address: sdorogov@fc.up.pt [24] describe phenomenologically the one-dimensional thick
Electronic address: jfmendes@fc.up.pt granular flows(the flow thickness supposed to be much

1063-651X/2000/6(B)/290911)/$15.00 PRE 61 2909 ©2000 The American Physical Society



2910 S. N. DOROGOVTSEV AND J. F. F. MENDES PRE 61

higher than the grain sizéy the following equations: 0
f dx[h(x,t)+r(x,t)]
ar ar (ﬁh ; ) o
o U T U0 oo T Y 0
guoxTAOX " =vr0t+f dXh(x0+r(x.0]. (3
oh oh
E— —Uy 5— 0f .

It follows directly from Eq.(2) that the solutions consist
of the partw(x—uv,t) moving with the velocityv, to the
right, the partu(x+wvt) moving with the velocityv to the
left, and the growingdfor h) or decreasindfor r) homoge-
neous background. Specific initial and boundary conditions,
which we shall use in Secs. Il and I, will result u{z) and

Here h(x,t) is a profile of the static part of the material,
r(x,t) is the width of a moving granular layer; we assume
that the flow is from right to left and all rolling grains are
supposed to move with an equal velocity r(x,t) and

h(x,t) describe completely the evolution of a pile. The sum - X .
of Egs. (1), a(r+h)/at—vdrldx=0, has the form of the w(z) consisting only of linear parts. Therefore, the solutions

continuity equation for graingr (x.t) is a local flow. The will have breaks between linear parts. Some of them will

right hand parts describe the conversion of the static graing'0V€ 0 the right with the velocity,, and others to the left

to rolling ones and vice versa depending on a relation be\_/wth the velocityv. Coordinates of left fronts of the rolling

tween a local sloph/dx and 6; . The meaning ob, is the and static grain distributions coincide and, because of the
velocity of the uphill fronts as we shall see later. Usually decreasing linearlyfor r) or increasing linearlyfor h) ho-
v,>v [14,24. 6; is a critical angle, or a so called repose MOYENeOUs background_, may move _Wlth velocities lower
angle, that is the angle to which the sandpile will evolve. Thehenv if the front ofr(x) is not 9f J“”.‘p""e form. One may
deviations of the local slope fromd; are supposed to be chgck, using, €.g., E¢3), that a jumplike frqnt of thg rolling
small. Eq.(1) is valid for r(x,t)>0. If r(x,t)=0, then the 9rain dlstr|b_ut|onr(x,t) may move _only with velocity to
right hand parts of Eqg1) are supposed to be equal to zero.the left. As it follows from Eq.(2), linear parts ofr (x) gnd
Therefore, the functiom ,(r), which equals const in the h(x) can move only parallel to themselves or are motionless.
thin flow regime[18], now is a constant, for r>0 and is Thus, local slopes of the distributions can change only dis-
zero atr=0 ! continuously if an income flow is constant in time. We shall
The phys;ical reasons to introduce equatiésin such a show the picture of the evolution more clearly for particular

form are described if24,25. One can see that, at a given examples in Sec?- Il and .”I' .

point, static grains converse to rolling ones only if the local . Thus, to d_escrlb(_e th_e _p_|le evolution we only ha_v_e to solve
slope of the pile is higher than the critical angle, and roIIingIInear equations with initial and boundary conditions. The
grains converse to static ones, if the local slope is lower thaffoundary conditions are defined from the condition on an

the critical angle. These linear equations are much simple'tnput flow (we set it constant usuajiyand from consideration

for an analytical treatment than the previously proposed nonc—)f a moving front of the pé — a moving boundary. In fact,

linear equations for a thin flow reginja8,26—28 in which that is the most difficult point in solving problems of this
g T ; kind.
the characteristic velocity,, in Eq. (1) is replaced by (x,t) Th | ibilities to ch initial diti
divided by a constant with the dimensionality of time. NS ere :?Ire szwlalrla possIbI |_(|jes to ¢ ooset 'T"t'a C?.n : |on§.
In fact, Egs.(1) represent, maybe, a minimal model for n Secs. 1l an We consider two most interesting an

the description of granular flows. The equations are reaIIynatural casedi) grains are absent at the initial moment, and

very simple: the second equation is independent of the firs@i) there is already a pile with a critical slope initially. We
one. The general solution of Eqd) may be written imme- shall show that the pile evolution is a complicated process in
diatély in the form[24]; both cases. The slope of a pile approaches its critical value

only at infinite times after a long relaxation process during
which areas with different slopes are present. At long times,

r(x,t)=u(x+uvt)— W(X—vt)— v bt, the pile evolution looks very similar for both initial condi-
vy tions, although, some distinction can be found even at the
infinity. Thus, we observe a long memory of initial condi-
h(x,t)=w(x—uvt)+v,6¢t, r>0; (2 tions.
The results obtained for initial conditior{§ and (ii) are
h(x,t)=const, r=0, presented in Figs. 1 and 5 — moviesroénd h distribution

profiles, in Figs. 2 and 6 — diagrams of trajectories of fronts

whereu(x) andw(x) are arbitrary functions. We shall use it and breaks of the grain distributions on the-plane, and in
to describe the sandpile evolution phenomenologically neFigs. 3 and 7 — the dependencies of the pile slopes on time.
glecting, as usual24,25, possible near-front deviations In fact, all these figures depict a long relaxation process to
from the thick flow regime. In fact, in papgR5], moving the critical statg(i.e., to the pile with the critical angleoy
fronts of granular flows were studied in intermediate situa-different means. For example, from Fig. 3 one sees that the
tions between the thick flow regime and the thin flow regime.relaxation is discontinuous — local derivatives of the slope
The resultd 25] show that such a neglect is possible. over time are zero or infinity for all times.

It is convenient to use also the relation describing conser- We shall demonstrate the space periodicity appearing
vation of number of grains that follows from the continuity while a pile evolves: it turns out that grains are piling layer
equation: by layer(see Fig. 2 and)éand the thickness of the layers just
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FIG. 2. The areas of different solutions for the profiles of rolling
and static grains for the pile evolution starting from an empty state
[see Egs.(22) and (23)]. v/v,=0.3. The lower segmented line
shows the dependence of the front coordinate on time. The solid
lines x=v(t—t,y,), mM=1.2,... depict the uphill movement of
ther(x) andh(x) breaks. The dashed lines= —v(t—t,,) show
the downhill movement of the break of théx) profile. The points
Xm are arranged periodically.

II. SANDPILE EVOLUTION STARTING
e FROM EMPTY STATE

A. Constant input flow

The case we will consider in this section corresponds to
the situation when there are no particles in the initial state.

Let there be a wall at=0, and grains be poured perma-
nently beginning from the moment=0 at this point, so
r(x=0.t)=rg is a boundary conditionrg, is the thickness of
the input flow. Let, first,ry be constant in time. The sand-
pile is supposed to expand to the left, i.e.xte —o. There
are no particles at the initial stage s(x<0,t=0)=0, h(x
<0,t=0)=0 are the initial conditions. Inserting general so-
<t,, the front moves with the velocity. (b) t=t, [see Fig. 2 and Iutlon_§ from Egs.(2) and_ the above_ initial and boundary
Eqg. (4)]. (c) t;<t<t,, the front moves with some velocityy;<v conditions one may obtain the fur]Ctlo_DSZ) andw(z) "
<v,, the breaks of the profiles move uphill with the velocity. To clear up the picture and to simplify the calculations we
(d) t=t,, the breaks approach the wall et 0. (¢) t,<t<ts, the  Start from the following consideration of the begininning
front proceeds to move with the velocityy, the break ofr(x)  Stage[Below, we shall demonstrate consistent complete cal-
moves downhill with the velocity . Note, that the right linear part ~culations in the more frequent case, which is realized at more
of r(x) is always motionless. After the break iffx) overtakes the long times, of a (x) front linearly decreasing to zero.
front att=t5, the general configuratiorie)—(e) is repeated with a One may see that because of the initial and boundary
lower front velocity. conditions forr (x,t) and of the form of general solution for

it Eq. (2), r(x,t) should first have a jump front; the part of

coincides with the thickness of the stratified layers observed(x,t) adjacent tox=0 has to be independent bfThe last
in two-component sandpilgd1,14]. Thus, we give positive statement follows immediately from the form of the general
answer to the question stated above and find a precursor gblutions Eq(2) and from the fixed right boundary condition
an intriguing stratification phenomena already in an one+(x=0;)=rg. The first statement follows from the last one
component sandpile problem. — the jump front ofr (x,t) is the only possibility for the first

One may wonder now if there is any possibility for a stage of the process. But then, as we have seen in Sec. I, it
sandpile to evolve without a space periodicity at all. Wehas to move with velocity.
demonstrate that, of course, such evolution is possible in a The distribution of static graind(x,t), which appears
thick flow regime, for example, if an input flow is a linear from the precipitation of rolling ones has a front that goes to
function of time. We show that the front moves with a con-zero without an abrupt leap but linearly in the case under
stant velocity all the time, and linear profiles of moving andconsideration, since there are no fixed boundary conditions
static grains expand without any surprises in that situatiodor hin the right. Then one can easily imagine that at first the
(see Fig. 4 The relation between amounts of static and roll-solutions have to look as shown in Fig(al (as we have
ing grains in a pile depends on the rate of the input flownoticed, nothing but linear functions may appear from the
increase. considered initial and boundary conditionk principle, one

X"y, X Vg

FIG. 1. The evolution of the profiles of rolling graim§x) and
static grainh(x) in the region—o<x<<0. In the initial state grains
are absentr(—o<x<0t=0)=h(—<x<0t=0)=0. (a) 0<t
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o‘é—t
g: L FIG. 4. The evolution of a sandpile with a linearly growing
_ input flow: ro=wvet, vg=const. An initial state is empty. We show
- here both static and rolling grains in the same plots, so profiles for
h(x) andh(x)+r(x) are presented. The fronts moves with a time-
N independent velocity 4 which is a function ob . (a) The ratevq is
0.7 0 35 much higher thaw§ [see Eq(33) and the text The front velocity

t is close to its maximal possible value rolling grains have no time
to converse into static ones, so the amount of rolling grains is much
FIG. 3. The dependence of the relative pile slope on time whergreater than the amount of static graifs). The ratev, is much
the pile evolution starts from an empty stai¢v,=0.3. 6, is the lower thanvj . A relative amount of rolling grains is small, the
slope of a static part of the pil@;, .., is the slope of the whole pile front velocity tends to zero, and the slope of the distribution of
consisting of static and rolling parts. The upper set of lines showstatic grains is nearly critical.
O+, - At infinity 6y,6,.,— 0;. The separated lines fat,,, are
defined for O<t<ty, t;<t<ts, t,<t<t,, etc.(see Fig. 2 The p from the very beginning, so a fifth condition fo(x,t) at
lines for 6, are defined for &t<t,, t;<t<t,, t3<t<ts, etc.  the front point is not necessary. In principle, the titpenay
Sometimes(e.g., att;<t<t,, tz<t<ty, etc. for f) the profiles  pe obtained if one demands that all parts of functiats)
have two parts with different slopes. andw(z) have to be connected together continuously, but we
prefer to use the already known expressiontfoand be sure
that calculations are self-consisténé., all parts of functions
u(z) and w(z) are connected together continuodsbnly

may immediately insert and h in this form [r(x,t)=r
—ax, h(x,t)=b(x+uvt), wherea andb are constant coeffi-
cientd into Eqg. (1) and obtain the following answer in the

’ > : afterwards.
time interval 0<t<t,=(v+v,)ro/(vv,by): Substituting the general solutions E@) into Eq. (5) we
v get
r(x,t)=|ro+ 0x) X+ot
( " vt+u, f ( ) ( (v+vy)? r0< <0)= vy P
) 4 W vv, 6% z vty 1%
h(x,t)= +” O¢(x+0t). (6)
vl ( vtuy ro) vy(v+2vy)
. o . . . ul 0<z< —|=ro+t ———6;z.
0 (x) is the Heaviside functiofiwe do not write the multi- vy b (v+uv,)?

plier ®(x+uvt) in the right hand side part of the second

equation of Eqs(4), since, of course,(x) andh(x) can not After substitution Eq(6) into Eq.(2) we again obtain our

be negativgé The static grains are precipitated from the roll- solution Eq.(4) of Eq. (1) with a front moving to the left

ing ones, so the front coordinates iffix) andh(x) should  with the velocityv in the time interval 6<t<t, [see Fig.

coincide. The meaning of the tintg is clear from Fig. 18 1(@].

— it is the very first instant at which the jump at the front ~ As a result, at the time; one gets

appears to be zero. Note, that the slope of the static part

ohlax=v,0:/(v+v,) is less than the critical slope, so the _ Uy

relaxatior:l to the cr?tical slope is nontrivial. r(xt)=ro+ v+u, O, (7a)
Nevertheless, to be sure, we prefer to substitute the gen-

eral solutions Eq(2) into the following set of initial and

v
boundary conditions h(x,ty)=ro+ 5 L; X, (7b)
u
rx,t=0)=0, for —[(v+uvy)/(vvy)]ro/0;<x<0 [Fig. 1(b)]. These equa-
h(x,t=0)=0 tions are used as initial conditions to find the solutions in the
' ' 5 next time intervak, <t<ts, at which the front of (x,t) will
F(x=0,0<t<t;)=ro, ® pe jumpless.
Timest, andt; appear naturally from the solutiofsee
h(x=—uvt,0<t<t;)=0. Fig. 1) but we prefer to write out their expressions immedi-

ately: t,=[(v+v,)%vvilre/6; and tz=[(v+uv,)(v
Using previous considerations to simplify the calcula-+3vu)/vvﬁ]ro/0f. As one may understand from the figure,
tions, we assume in E@5) the front velocity to be equal to the meaning of the times is the followint; is the time at
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Vv, —

FIG. 5. The evolution of the
profiles of rolling graing (x) and
r static grainsh(x) starting from

) -~
o e L the critical state(see the text for
/ /— detailg. At the initial momentr
v (—e<x<0t=0)=0 andh(—
h h <x<0t=0)=6;(x+d). Plots
/ / (a)—(g) show the profiles at some
successive instants. Afterwards
the evolution proceeds in a similar
way. The scale is changed from

3
!

3
x

A R ; 7_lfu_ro _ ; _7 ; one plot to another.
vu o v 0 /L 0
(7 —
KT h ? h h u h
v, —>,/
’,U ’,,' VU 7 1/ /,,,’Vu)
= Y
which breaks of (x,t) andh(x,t) moving from the front to v+uy o \
the right with the velocity, will approach the poink=0; Nx=== Q_Ud(t_tl)vt1<t<t3) =0, (8b
andts is the time at which the break ofx,t) moving from u ot
x=0 will overtake the front.
To simplify our calculations, we again use the expression v+ T
for t3 and check the correctness of the choicet.pht the h(x=— o0 g—vd(t—tl),tl<t<t3> =0. (80
very end of the calculations. u U
Now we show how to treat moving boundary conditions.
We have to add to the initial conditions Eq) the following Equations(8b) and (8¢) are the conditions for the left
boundary conditions: front of the pile that is supposed to move with a yet unknown
velocity vy. All we have to do is(i) to insert the general
r(x=0t>0)=ry, (8a) solutions Eq(2) into Egs.(7) and(8); (ii) to find v, u(z),
and w(z); and (iii) to check the self-consistency of our
0 tot, t, G t t choice of t3, which was made beforehand, in fact, from
-d o - = - —  —
g | _
X ! -
FIG. 6. Trajectories of the front and the breaks of tii®) and
h(x) profiles ont,x-plane in the case of the pile evolution starting 0.7 0 125
from a critical state(compare with Fig. 2 v/v,=0.3. h(x,t=0) t
= 6;(x+d). The lower segmented line shows the dependence of the
front coordinate on time. The solid linex=uv,(t—tyy),m FIG. 7. The dependence of the relative pile sl@péd; on time

=1,2, ... depict the uphill movement of thex) andh(x) breaks.  when the pile evolution starts from the critical stétempare with

The dashed lineg=—v(t—t,,,) show the downhill movement of Fig. 3. v/v,=0.3. In some time intervals the profile of static grains
the break of the (x) profile. The coordinates of plateaus are ar- has two or even three parts with different slopes. Segments with the
ranged periodically. slope equal exactly to the critical one are present even at long times.
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physical reasons. Note that the beforehand choicg afas (v+vy)? g (v+vy)2 ro
used only to make the following intermediate formulas more — = 3 — = 3
v f v f
Substitution of Eq(2) into Eg. (8¢c), (7b), (7a), and (8b)
3 vy(2v+3vy)
=-rgt ———6;z (16)
2 2(v+vy)?
U+Uu 2 lo
w| — > (vdv+20uv+2vdvu+3vu)?
vV f
! Combining Egs(11) and(15) we get
+v,)?r
SRS
vv, b 5 (0+200)
(v+vy)ro vy(v+2v,
(v+vy)(v—oyg) Uy u O<Z<—20—f =r H—)Zafz. (17)
= ro+ Osz, 9 Uy VT Uy
v(v,tug) vytug
(v+uvy)? f_o< vty Q) __Uu 0.7 (10 Egs.(16), (17), (10), and(14) present a full answer fan(z)
vv, 6% v 0 vtuvy andw(z). One may see easily that they are bounded continu-
ously, so our choice of; was correct. Inserting Eq$16),
(O< <v+vu ro) +vu(v+20u) 1y (17), (10), and(14) into Eq. (2) we obtain a full solution of
u z —|= — 6z .
v, 0 (0+0,)2 f the problem fort; <t<ts:
Uy
Foy (t—t,) <x<0t>t)=ro+ 0:x, (183
( (v—vq)(v+vy)(v+2v,) ro> ! 2 VU pty,
ul 0<z< > —
Vo 0
2
Uy (v+vy)® Tro Uy )
= - ry — —— <x<—-v(t—1ty),v,(t—t
ro+ EETRICETR 6z (12) ( su0F200) 0 vT2vy v(t—ty),vy(t—ty)

correspondingly. The functiongz) from Eqgs.(11) and(12)
have to coincide since they are definedattleast overlap- 2

ping intervals ofz (we shall see below that, in fact, these
intervals coincidg Thus, equating Eq911) and (12) we
obtain the answer fow4 in the case under consideration:

One sees immediately thaf<v,v,. Inserting this expres-
sion into Eq.(12) we find that the intervals of the variabte

VY

vd:(v+20u) '

for u(z) in Egs.(11) and(12) are the same.
Inserting Eq.(13) into Eq.(9) we obtain

At last, substitution of Eq(2) into Eq.(8a) gives, accounting
for already known answers faw(z) Egs. (10) and (14) in

3(U-i-vu)2 ro (v+vy)?ry
vv, 6 vv, b
vtuy, (v+2vy)
- r .
2v, % 2(v+uy) 2

r vy(v+2v VY
_fo, vulvt2v)) ( +_ut>, (18b)
2(v+uvy)? v+2v,
r(_U(t_t2)<X<0,t<t3)—r0+ —2(U+Uu) 0fX, (18(:)
13
h(v,(t—t t<x<0)= — Y g (x+ot
(UU( 2)1 v X )_ (U+Uu) f(x v )1
(180
+o)? T
3 (v+uvy) fo vy tex
vy(v+2vy) 6 v+2v,
(14) <—vu(t—t2>,o,t<t3>
v+u, (v+2vy) vy,
- 2v, fo 2(v+uvy) O X+v+2vut - (189

different intervals ofz, the following expressions fau(z):

(U+Uu) ro

and

(U+Uu)2 ro
vy b vi O

vy(v+2vy)
(v+vu)2

These solutions are shown in FiggbZe [see also Fig. 2,

f the regiont;<t<tj in which trajectories of the front—a
(15) lower segmented line — and the breaks @f,t) andh(x,t)

are depictefl The solutions(189 and (18d) are defined in

region 1 of Fig. 2, the solutioflL8b) is defined in region 2 of



PRE 61 EVOLUTION OF A SANDPILE IN A THICK-FLOW REGIME 2915

the figure, the solutioi18¢) is defined in region 3, and the m(m+1) (v+v,)? ro
solution(18e for h(x,t) is defined in both regions 2 and 3. tom= 2 02 o,
u

The evolution looks as the following. At the instant
new linear parts of and h appear at the front point=
—[(v+vy)/vylro/6;. The new front moves to the left with
the velocityvy, breaks ofr(x,t) and h(x,t) move to the
right with the velocityv ,—a solid linex=uv,(t—t,) in Fig.
2. The slope of this part of the static grain distributho(x,t)
is higher than it was at the first stage but lower than the
critical slope. The breaks approach tke 0 point att=t,. X(tom_1)=—m
Then a new time-independent linear part rgk) appears
close to the wall. The left part proceeds to move to the

left, so we see a break moving downhill — a dashed Iine,:-lence’ these points are arranged periodically. Two other

X=—v(t—t,) in Fig. 2. Its velocity equale. Note that ypes of lines are shown in Fig. 2: solid lines=v(t

. —t,,) and dashed lines= —v(t—t,,), m=1,2,... . The
unlike r(x,t), h(x,t) has no breaks fot,<t<t;. At the . 2m . . me
instantt; the break ofr(x,t) overtakes the front. That is lines of the first type depict the uphill movement of the

. . ; . breaks of both profiles(x) andh(x) [Fig. 1(c)]. The lines of
gg\?vsr:krjlliﬁ,vzllgf:ﬁyﬂ;? t\r:g%(;gkgf ih: front is lower than thethe second type show the downhill movement of the break of
d .

) . .__the profiler (x) with the velocityv [see Fig. 1e)].
Therefore we confirm the general picture of the evolution : : ;
oredicted in Sec. I: there exist breaks of boifx.t) and Solutions for all regions of Fig. 2, connected at these

m=1.2,... . (20)

The front coordinates corresponding to tintgg_; at which
the front velocity changes its value are

(U+Uu) ro
Uy Gf,

m=12,... . (21

h(x,t) moving uphill with the velocityv,, and only the lines, look as
break of h(x,t) is moving downhill with the velocityv. r(—v(t—tym—2),v,(t—tom) <x<0)
When the breaks approach a wall or the breakh(f,t)
overtakes the front, new linear parts of the solutions appear. Uy
From our solutions E¢(18), we obtain new initial condi- = r0+m(v—+vu)9fxv
tions for r(x,t) andh(x,t) at the moment=t;. Then we
may repeat the described procedure for the next time interval mm+1) (v+vy)2ry vouy
t;<t<ts, etc. However, now, when we understand the struc- - > .Y E—V—
um m

ture of the solution, one may again simplify the calculations.
Instead of calculating the functiongz) andw(z) one may

proceed directly withr (x,t) andh(x,t). Areas of different <X<_U(t_t2m)avu(t_t2m))
linear parts of solutions are triangular regions in Fig. 2 sepa-

rated one from each other by solid or dashed lines — ro 1 vuVm Vo,
trajectories of the breaks. Let us suppose that the solution is =§+ mm+1) 5 af(x+ V—t),
known in the region (0,0) —x;,t;) — (0t,), i.e., in region (v+oy) m

1 in Fig. 2. One may sew easily an unknown linear solution

in the adjusted triangular region 2 together with the known m=12,... (22
one along the linex=—v(t—t,). It is easy to find coeffi-

cients of linear terms and, therefore, the front velocity. From h(vy(t—tams2) <X<vy(t=tzy),0)

this values one finds the shape,; (t;) — (0,ty) — (X5,t3)
of region 2 in which the new part of the solution is defined
(see Fig. 2 Then we repeat the described procedure for the
next triangle, etc.

After these simple but rather tedious calculations we ob- m=0,17... . (23
tain the total solution consisting of linear parts, a structure oh

which one can see from Figs. 1 and 2 and following equa1€"€: We Setg=0. Inequalities in the right hand parts of
tions. The lowest segmente% line in Fig. 2 shows theg dgpergqs.(ZZ) and(23) define the areas of validity of the solutions

dence on time of the front position. Coordinates of the seg£See Eig. 2 Equations(zg) and (23) describe totally the
sandpile evolution, see Fig(ld-e).

mo-+uv, Vi
= = r0+
2 vy, (m+21)(v+uvy,

0( +Uv”t)
X EYEE ’
) Vim

t :
ments are From Eq.(23) and Fig. 2, a space periodicity of the pro-
m(m+1) (v+vy)2ro vu, cess is evident: general §hapes of the profiled andh(x)
X(tom—1<t<toms1)=— 5 oV 0 V—t, are repeated each time the front moves by (
u”m m

+ov)ro/(v,6s) to the left. In fact, the pile is increased layer
by layer, and the expression for the width of these layers is
m=0,12... (19 the same as the one for the width of stratified layers of dif-
) ) ] ) ferent fractions in a two-component sandpiteat was ob-
(for m=0 the time interval is &:t<ty) with Vp=mv+(M  (3ined in paperkl1,14). One sees from Eq23) that heights

+1)v,. The particular times shown in Fig. 2 are of the pile at timeg,,, are also periodic im:
_m+vy)[(m=Dov+(m+1v,] ro v+uy
tom-1=% 02 b h(x=0t,,)=m 5 ro,m=0,1,2... . (24
u u
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It follows from Eg.(23) that the slopef,=dh/dx, of the  another moving boundary condition(x=—uv4t,t=0)=0
static part of the pile will approach its critical value only at and Eq.(2) one may geti(z). Inserting both answers into the
infinite time: conditionr(x=0t)=vot we (i) verify that the choice of a

constant front velocity is right angi) find vy as a function
6, m=12,... Ofvo
' o We write out the answers immediately and check them by
(25  substituting in Eq.(1). The profiles of moving and static
grains look as

U
9h(t2m3<t<t2m)=<1—m(v—+vu)

(for m=1, 0<t<t,) (see Fig. 3 At ty,_<t<t,,,m
=1,2, ... there are two different slopes for two parts of the Vo
profile h(x). Fort,,<t<t,y,.1,m=0,1,2 ... all theprofile r= U—d(X+vdt),
has the same slope. Thus, for long timds-[(v

+v,)?%l(vvd)]ro/ 65 the slope behaves as (29
) 1_1 ro (26) h—vd+vu0f(X+Udt)
h= Uy 2v9ft f

o (see Fig. 4, where the front velocity is
and 6, relaxes slowly to its final valu®; by a power law.

A slope of the whole pile — including both static and
rolling parts, 6y, ,=d(h+r)/dx, depends on time in the fol- v :} Uy~ v \/1+4 VUy 140 Uy 1
lowing way: 972 1+ 6w, /v, vy—v)? "vo '

(30
On s r(tom—2<t<tpm)=

Uy— VU

e,
m(v+uvy) In the figure, the evolution of the pile in the situation under

consideration is depicted. One may see that the relation be-

On-vr(tom-1<t<tom:1) tween amounts of rolling and static grains depends consider-

v —0 02 ably on the rate of the input flow increase. As it follows from
=1+ u + 6;, (27 Egs.(29) and(30), whenvy>uv ,6;,
m+vy)  m(m+1)(v+u,)?
m=1.2, ... Va=v,
(see Fig. 3 and approaches the final valde from above at vo
long times. It behaves asymptotically as r= ?(X+ vt),
g, =] 14+ U0 )a (28)
h+r= 50t f v
r vy Y 2v 6t h= v+“v Os(x+ot), (3D
u

[compare with Eq(26)].

At long times, the coordinate of the front iX  and the amount of rolling grains is much higher than the
= \2vurot/ 65, and its velocity tends te- Vuro/(265t). TWo  amount of static graingFig. 4@)]. The front velocity ap-

last relations are obvious. Indeed, at long times the slope Qdroaches its highest possible value, and rolling grains have
a plle is close to its critical value. The relative part of rO”Ing no time to converse into static ones. For a low

grains is small. After substitution of a linear function with

the critical slope into the condition of conservation of grains

Eq. (3) we obtain last relations immediately. D=\ [vov
0 L

B. Time dependent input flow
As we have noted in Sec. |, space periodicity of the pile = /vo_‘9f<x+ [Vov t) (32

evolution may disappear if an input flow increases with time. v o: )’

Let us consider the simplest example of a linear time depen-

dence:ry(t)=vgt (the constant, has dimensionality of a

velocity). Now there are not any jumps of profiles at the h= 6 X+ /ﬂt),

front point, since the growth of, starts from zero and an 05

initial state is empty, so the problem is simpler than that

considered above. so the front velocity tends to zero, the slope of the distribu-
Instead of trying to solve the problem directly, one maytion of static grains is nearly critical, and the relative amount

proceed in the following way. First we suppose that the ve-of rolling grains is smal[Fig. 4b)].

locity of the front is constant. Let us callity again. From a The amounts of rolling and static grains in a pile are equal

moving boundary conditionh(x=—uv4t,t=0)=0 at the for the following particular value of the rate of the input flow

front point accounting for E¢2) we obtainw(z). Then from  growth:
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vy,
*

vy = 0
0 v+2u, f

(33

[compare with Eq.13) from Sec. Il A]. In this particular
case, the front velocity is} =v/2.

IIl. SANDPILE EVOLUTION STARTING
FROM CRITICAL STATE

Now, let us switch on the input flow of grains when there
is already a pile with the critical slope. Thus, the initial con-
dition for h is h(x,t=0)= #;(x+d), whered is the initial
horizontal size of a pile. All other initial and boundary con-
ditions are the same as in Sec. ll(fke input flow is time-
independent

Now one can proceed with the calculations similar to

N A THICK-FLOW REGIME 2917

step of rolling grains is inclined now. After its first point
approaches the last left point of the critical pjleig. 5(1)]
new linear parts of (x) andh(x) emerge that move to the
left with some velocity y<v,v,, [Fig. 5m)]. Two breaks of
r(x) emerge that move one to each other.

After the breaks medfig. 5(n)], two new breaks of (x)
emerge that move away one from each othgig. 50)]
while h(x,t) proceeds the previous evolution. The moving
downhill break ofr (x) overtakes the front at some moment
[Fig. 5(p)]; after that an inclined step starts to climb uphill
leaving after itself a new static critical slope pHFig. 5)].
Afterwards the evolution proceeds in the same way.

Thus, one sees that the evolution of a pile in this case
looks more complicated than in Sec. Il. Nevertheless, as it is
evident from Fig. 6, in which all trajectories of the front and
breaks ofr (x,t) andh(x,t) are shown, a general similarity

those that were made in Sec. Il to obtain the solutions deremains.

scribing the evolution of the pile. We omit the tedious cal-

culations and present immediately results for the case undert, ),v ,(t—tyn), m=0,1,...

consideration. Main answers are presented schematically
Fig. 5 in which the distributions of rolling graingx) and
the static onei(x) are shown in several successive mo-
ments.(Note that scales change from one figure to another.
Trajectories of the front and the breaks on the-plane are
shown in Fig. 6.

Let us comment the contents of Fig. 5, since it looks
rather intricate. At the initial moment rolling grains are ab-
sent, and the angle of the profile of static grains is critical,
After we switch on an external flow, a step of rolling grains
starts to descend downhill the critical profile of static grains
[Fig. 5(@)]. Rolling grains do not convert to the static ones.

After the step approaches the last point of the profile of

static graingFig. 5(b)] it proceeds to move to the left with
the same velocityw, but the height of the jump starts to
decrease with timgFig. 5(c)]. A new linear part ofr(x)
emerges and begins to move uphill with the veloaity.

(Recall that all linear parts of profiles move as a whole or

Let us describe Fig. 6. The solid lineg=uv(t
show trajectories of the
iNx,t) andh(x,t) breaks moving uphillwe introduce these
notations for the instants of time to keep a tie with the cor-
responding notations in Sec).llThe dashed linegs= —uv(t
—tom), —v(t—tym), m=0,1,... andx=—uvt depict tra-
jectories of ther(x,t) break moving downhill. Comparing
with Fig. 2 from the previous section one sees that the cor-
responding lines for the break trajectories are splitted now,
and static segments of the front trajectory appear. The ex-
pressions for particular times shown in Fig. 6 are

stay without movement. They can not change their slope

with time.) A new more gently sloping part df(x) simulta-
neously appears and begin to move to the left with the ve
locity v, so a break oh(x), coinciding with the break of
r(x), moves uphill with the velocity .

After the decreasing jump at the front ofx) disappears
[Fig. 5d)] the linear part of (x,t) proceeds to move uphill
with the velocityv,, [Fig. 5€)]. The corresponding part of
h(x) also proceeds to move uphill. Behind it, a new static
part of the profile with the critical slope emerges, so, in fact,
an inclined step moves uphill.

When its first point touches a wdlFig. 5f)], a new static
linear part ofr(x) appears to satisfy the boundary condition
r(x=0;t)=rq [Fig. 5g)]. An old part ofr(x) proceeds to
move uphill, so a new break af(x), that moves downhill
with the velocityv, emerges. Evolution ofi(x,t) proceeds
as before. At some instaffFig. 5h)] the last point ofr (x)
and the break of(x) meet. New linear part af(x) emerges
and starts to move downhillFig. 5(i)]. The h(x) profile
evolves in the same way as before.

When all theh(x) profile appears to be criticfFig. 5(j)],
the wholer(x) distribution is linear. This inclined profile
starts to move down the critical ori€ig. 5k)]. The only
difference with the instant depicted in Figap is that the

. v+uy +(m—1)m(v+vu)2
2m-2=M 2
VU 2 vos
- v+ov m(m+1) (v+uvy,)?
t5=Mm—— 5 —. (39
UUy VU
m=1,2,...

— for the instants when the breaks pfx,t) and h(x,t)
reach a wall — and

o 1= 1 (et 1) ]2
2m-1= EF[(m Ju+(m )vu]?f,
u
= Vi m+1lov+u, (2 o 35
2m+l_vv 2 Uvﬁ [mU (m )Uu]efv ( )
m=0,1, ...

— for the times at which the break ofx,t) overtakes the
front.

The trajectory of the front can be described by the follow-
ing relation
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B v+uy o evolution even for the one-component pile. The pile spills

X(tome1<t<toms1)=—d—(m+1) B during a repeating process if an income flow is constant:

v grains are piling layer by layer. The thickness of the layers

- m(m+1) (v+v)2ry vuy coincides surprisingly with the thickness of stratified layers
X(tam-1<t<tpm:)) =~ — oV, 0 Vb at the two-component sandpile probl¢ii,14. Thus, in the

(36) one-component pile, we found a clear precursor of the strati-
fication phenomena.
m=0,1, ... We have found very reach behavior using the most simple
and clear approacf24] admiting an easy analytical treat-
andx(0<t<t_,)=—d. Note that the second relation of Eq. ment. The slope of the pile goes to its final critical value after
(36) coincides with Eq(19). Thus, at the corresponding in- complex relaxation, which is a long discontinuous process.
stants, the front velocities are the same in both cases. Th@adeed, in the case of a constant income flow, the pile slope
first relation of Eq.(36) again demonstrates the space peri-may change only discontinuouslyee Figs. 2 and)6At long

odicity of the process. times the deviation of the slope from its critical value is
Time intervals for which the front is motionless do not proportional toyrg/t.
change with time: The pile evolution from different initial conditions looks
N very similar at long times but even at such times one can
= Y Uud — observe some differen¢eompare Figs. 2 and 6 for two most
tszl tszl ’ m 1121 s (37) . . . . .
LUy natural situations: the sandpile evolution starting from an

Th . | b f initial giti empty state and the evolution starting from a critical gtate
ese intervals appear because of a new initial condition, s0 1o space periodicity disappears if an input flow grows

even at ang times one may observe .the influence Of. th'ﬁnearly with time. In such a situation the sandpile front

initial condition. Nevertheless, the duration of the other time | oves with a constant velocity all the time, and the pile

mtervals,_ when the front MOVes, Increases with time. Th.usevolves continuously without any peculiaritiésee Fig. 4.

the relative effect of the initial conditions decreases with Formally speaking, we studied only the one-dimensional

t|m\(/a\) hall d onlv the followi It for problem, but an ordinary three-dimensional sandpile with an
€ shall need only the following resu ' axial symmetry(that means that sand is pouring on an infi-

h D Vex<p (t— nite horizontal plane at a single poinhay be described by
[ou(t=tom: ) <X <0u(t=tom: 2)] the same equations as E@$) (the coordinatex means the
v+uy, o distance from the centerThus, our results also stay valid for
= 6f| x+d+(m+1) vy 0;) such a pile if one applies the phenomenological description
u
[18,24].
h[vy(t=tomy ) <X<vy(t—tom)] Aradian, Raphdeand de Gennef29] have recently in-

troduced a dependence of the downhill velocitgnr in the
frames of the thick flow regimeuv(,=const). The profile
X+V_mt) . (39 shapes in that case become nonlinear but a general picture of
a sandpile evolution will hardly change, since the structure
m=0,1,... . of the evolution equations is the same — in fact, the second
equation of Eqgs(1) is independent of the first one.
One sees that these relations are valid for different strips The following questions remain open. How crucially do
Vy(t—tomp) <X<vy(t—tom+2) and vy(t—ty.,) <X our results depend on the used, maybe oversimplified, phe-
<v,(t—tyy) of the x,t-plane. The first relation of Eq38) nomenological approach? Are they really of general signifi-
describes parts of the distribution of static grains with thecance? Does the sandpile evolution in a thin flow regime
critical slope, and the second relation of E§8) coincides differ essentially from the described one? It is apparently
with the corresponding answer E@3) for the first case. impossible to answer these questions within the present ap-
The slope angles of the profiles of static grains obtainegbroach, however the last result32] and[33] on granular
from Eq. (38) are shown in Fig. 7, which demonstrates mostflows in thin and intermediate regimes let one hope to solve
naturally the relaxation to the critical state. Unlike the previ-these beautiful problems.
ous sectior(see Fig. 2, in this case, segments with the criti-
cal angle are present. As can be seen from Fig. 7, different
segments may overlap, and the profile may have two or even ACKNOWLEDGMENTS
three parts with different slopes simultaneouslge also Fig.
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In summary, in the case of the thick flow regime, we havescript and A. V. Goltsev, Yu. G. Pogorelov, and A. N. Sam-
shown that space periodicity takes place during a sandpilakhin for many useful discussions.

m (v+uvy) Vi
=— r0+ Gf
2 vy (m+1)(v+ovy)

IV. CONCLUSIONS
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